Differentiation Rules

$$\frac{d}{dx}x^{n} = nx^{n-1}$$

$$\frac{d}{dx}e^{x} = e^{x}$$

$$\frac{d}{dx} \ln x = \frac{1}{x}$$

$$\frac{d}{dx} \sin x = \cos x$$

$$\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1 - x^{2}}}$$

$$\frac{d}{dx} \cos x = -\sin x$$

$$\frac{d}{dx} \cos^{-1} x = \frac{-1}{\sqrt{1 - x^{2}}}$$

$$\frac{d}{dx} \tan x = \sec^{2} x$$

$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1 + x^{2}}$$

$$\frac{d}{dx} \cot^{-1} x = \frac{-1}{1 + x^{2}}$$

$$\frac{d}{dx} \sec x = \sec x \tan x$$

$$\frac{d}{dx} \cot^{-1} x = \frac{1}{x \sqrt{x^{2} - 1}}$$

Note: Remember the Chain Rule! If the variable in the function is not just plain x but is u(x), you must multiply the results by $\frac{du}{dx}$.

Product Rule: (uv)' = uv' + vu'

Quotient Rule: $\left(\frac{u}{v}\right)' = \frac{vu' - uv'}{v^2}$

TAE	BLE 4.2 Antiden	TABLE 4.2 Antiderivative formulas, k a nonzero constant			
	Function	General antiderivative		Function	General antiderivative
i	1. x^n	$\frac{1}{n+1}x^{n+1} + C, n \neq -1$	8	$e^{k x}$	$rac{1}{k}e^{kx}+C$
2.	2. $\sin kx$	$-\frac{1}{k}\cos kx + C$	6	_ ×	$\ln x + C, x \neq 0$
3.	cos kx	$\frac{1}{k}\sin kx + C$	10.	$\frac{1}{\sqrt{1-k^2x^2}}$	$\frac{1}{k}\sin^{-1}kx + C$
4	4. $\sec^2 kx$	$\frac{1}{k} \tan kx + C$	ij	$\frac{1}{1+k^2x^2}$	$\frac{1}{k}\tan^{-1}kx + C$
	$5. \cos^2 kx$	$-\frac{1}{k}\cot kx + C$	12.	1 1	$\sec^{-1} kx + C, kx > 1$
.9	6. $\sec kx \tan kx$	$\frac{1}{k}\sec kx + C$	13.	$x \lor k^2 x^2 - 1$ a^{kx}	$\left(\frac{1}{r_1}\right)a^{kx} + C, a > 0, a \neq 1$
7.	csc kx cot kx	$-\frac{1}{k}\csc kx + C$			(k m a)