Quantitative Skills \& Reasoning - Math 1001

Dr. Bob Brown, Jr.
Dean Emeritus

Professor Emeritus
East Georgia State College
Probability Unit
pp 279-282 in textbook

Definitions

- The result of an experiment is called an outcome.
- An event is any particular outcome or group of outcomes.
- A simple event is an event that cannot be broken down further.
- The sample space is the set of all possible simple events.

Example

When you roll a die, the sample space is $\{1,2,3,4,5,6\}$. Rolling a two is a simple event. Rolling an odd number is compound event.

Example

When you draw a single card from a standard 52-card deck, the sample space is set of thirteen values:
\{Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2\} for each of the four suits \{Spades, Hearts, Clubs, Diamonds\}.
Drawing the Queen of Diamonds is a simple event.
Drawing a four is a compound event.

Definitions

- Given that all outcomes are equally likely, we can compute the probability of an event E using this formula:

$$
P(E)=\frac{\text { Number of outcomes corresponding to the event } E}{\text { Total number of equal likely outcomes }}
$$

Example

If we roll a 6 -sided fair die, calculate:

- $P($ rolling a six $)=$

$$
P(\text { rolling a six })=1 / 6
$$

- $P($ rolling an odd number $)=$
$P($ rolling an odd number $)=3 / 6=1 / 2$

Example

Given a standard deck of 52-card playing cards, calculate:

- $P($ drawing the Queen of Diamonds $)=$ $P($ drawing the Queen of Diamonds $)=1 / 52$
- $P($ drawing a four $)=$

$$
P(\text { drawing a four })=4 / 52=1 / 13
$$

Example

A ball is drawn randomly from a jar that contains 6 red marbles, 2 white marbles, and 5 yellow marbles. Find the probability of the given event.
a. A red marble is drawn
b. A white marble is drawn

Example

A ball is drawn randomly from a jar that contains 6 red marbles, 2 white marbles, and 5 yellow marbles. Find the probability of the given event.
a. A red marble is drawn $\frac{6}{13}$
b. A white marble is drawn $\frac{2}{13}$

Definitions

- An impossible event has a probability of 0 .
- A certain event has a probability of 1.

The probability of any event must be $0 \leq P(E) \leq 1$.

Definitions

- The complement of an event is the event " E does not happen." The notation \bar{E} is used for the complement of event E.
- We can compute the probability of the complement using
- $P(\bar{E})=1-P(E)$. Notice also that $P(E)=1-P(\bar{E})$.

Example

Compute the probability of rolling a 12 -sided die and getting a number other than 8 .
Steps:

1. $P(8)=1 / 12$
2. $P($ not an 8$)=1-\frac{1}{12}=\frac{11}{12}$

Definitions

- Odds is the ratio of the probability that a particular event will occur to the probability that it will not occur. We always express odds in simplest form.

The odds for an event E is the ratio of $\mathrm{P}(E)$ to $\mathrm{P}($ not $E)$.

The odds against an event E is the ratio of $\mathrm{P}($ not $E)$ to $\mathrm{P}(E)$.

Example

A card is drawn randomly from a standard 52-card deck. Find the following:

Odds in favor of drawing a face card
$=\frac{\frac{12}{52}}{\frac{40}{52}}=\frac{12}{52} * \frac{52}{40}=\frac{12}{40}=\frac{3}{10} \rightarrow 3$ to 10
Odds against drawing a face card
$=\frac{\frac{40}{52}}{\frac{12}{52}}=\frac{40}{52} * \frac{52}{12}=\frac{40}{12}=\frac{10}{3} \rightarrow 10$ to 3

Note: Odds Are Always Expressed As Integers

The Probability of an event occurring is $\mathrm{P}(\mathrm{E})=.85, \mathrm{P}($ Not E$)=1-.85=.15$
Odds in favor of Event E
$=\frac{.85}{.15}=\frac{85}{15}=\frac{17}{3} \rightarrow 17$ to 3
Odds against event E
$=\frac{.15}{.85}=\frac{15}{85}=\frac{3}{17} \rightarrow 3$ to 17
In homework, if you have P as decimal, you will have to be sure you have integers in the final probability ratio.

