Quantitative Skills \& Reasoning - Math 1001

Dr. Bob Brown, Jr.
Dean Emeritus

Professor Emeritus
East Georgia State College
Probability Unit - Expected Value
pp 309-312 in textbook

Definitions

Expected Value is the average gain or loss of an event if the procedure is repeated many times.

$$
\mu=E(X)=\sum_{i} x_{i} p_{i}
$$

where $x_{i}=$ is an outcome and p_{i} is the probability of that outcome We can compute the expected value by multiplying each outcome by the probability of that outcome, then adding up the products.

Example

You roll a die. You receive a dollar for each dot. What is the expected value of the amount you receive. This would also be the average of what you would receive over many attempts.

$$
P(1)=P(2)=P(3)=\cdots \cdots=P(6)=\frac{1}{6}
$$

Expected Value $=\$ 1\left(\frac{1}{6}\right)+\$ 2\left(\frac{1}{6}\right)+\$ 3\left(\frac{1}{6}\right)+\$ 4\left(\frac{1}{6}\right)+\$ 5\left(\frac{1}{6}\right)+\$ 6\left(\frac{1}{6}\right)=\$ 21\left(\frac{1}{6}\right)=\$ 3.50$

Example

You purchase a raffle ticket to help out a the high school football team. The raffle ticket costs $\$ 20$ and 1,500 tickets are sold. One of them will be drawn and the winner receives $\$ 1,000$. Compute the expected value for this raffle. Outcome Gain or Loss Probability

Win Prize	$\$ 980$	$\frac{1}{1500}$
Lose	$-\$ 20$	$\frac{1499}{1500}$

Expected Value $=\$ 980 \frac{1}{1500}-\$ 20 \frac{1499}{1500}=-\$ 19.33$

Example

A game involves rolling two dice. If the sum is 12 , you win $\$ 10$, otherwise if the sum is greater than 8 , you win $\$ 5$. It costs $\$ 2$ to play. What is the expected value? Should you play?

Example (cont.)

Possible Outcomes

Dice \#1		Dice \#2					
		1	2	3	4	5	6
	1	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
	2	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
	3	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
	4	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
	5	$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
	6	$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

Roll $12 \quad 8<$ Roll <12

Example (cont.)

Outcome Gain or Loss Probability

Roll 12	$\$ 8$	$\frac{1}{36}$
8<Roll<12	$\$ 3$	$\frac{9}{36}=\frac{1}{4}$
Roll 8 or less	$-\$ 2$	$\frac{26}{36}=\frac{13}{18}$

Expected Value $=\$ 8 \frac{1}{36}+\$ 3 \frac{1}{4}-\$ 2 \frac{13}{18}=-\$.47$

Example (cont.)

What if instead it cost $\$ 1$ to play? What is the expected value? Should you play?

Outcome Gain or Loss Probability

Roll 12	$\$ 9$	$\frac{1}{36}$
$8<$ Roll <12	$\$ 4$	$\frac{9}{36}=\frac{1}{4}$
Roll 8 or less	$-\$ 1$	$\frac{26}{36}=\frac{13}{18}$

Expected Value $=\$ 9 \frac{1}{36}+\$ 4 \frac{1}{4}-\$ 1 \frac{13}{18}=\$.53 \quad$ Yes. The House Will Lose

Example

An insurance company estimates the probability of an earthquake in the next year to be 0.0013 . The average damage done by an earthquake it estimates to be $\$ 60,000$. If the company offers earthquake insurance for $\$ 100$, what is their expected value of the policy?

Outcome Gain or Loss Probability
Earthquake \$59900 . 0013
No Earthquake -\$100 . 9987

Expected Value $=\$ 59900(.0013)-100(.9987)=-\$ 22$
If >0 The insurance company would go out of business

