Quantitative Skills \& Reasoning - Math 1001

Dr. Bob Brown, Jr.
Dean Emeritus
Professor Emeritus

East Georgia State College
Data Analysis Unit
Five Number Summary
pp 271-278 in textbook

Quartiles

- The lower quartile (or first quartile) divides the lowest fourth (25\%) of a data set from the upper three-fourths. It is the median of the data values in the lower half of a data set.
- The middle quartile (or second quartile) is the overall median (50\%).
- The upper quartile (or third quartile) divides the lower three-fourths (75%) of a data set from the upper fourth. It is the median of the data values in the upper half of a data set.

Five-Number Summary

The five-number summary for a data set consists of the following five numbers:
lowest value lower quartile median upper quartile highest value

Boxplots

A boxplot shows the five-number summary visually, with a rectangular box enclosing the lower and upper quartiles, a line marking the median, and whiskers extending to the low and high values.

Example 1

For the following dataset find complete the table below, then create a boxplot.

A group of students were asked how much they would pay for a meal. Their responses were: $\$ 7.50, \$ 8.25, \$ 9.00, \$ 8.00, \$ 7.25, \$ 7.50, \$ 8.00, \$ 7.00$.

n	Mean (\bar{x})	Low Value	Lower Quartile	Median	Upper Quartile	High Value	Standard Deviation

Example 1 (cont.)

$n=8$
$\$ 7.00, \$ 7.25, \$ 7.50, \$ 7.50, \$ 8.00, \$ 8.00, \$ 8.25, \$ 9.00$ Sorted Data
$\bar{x}=\frac{\$ 7.00+\$ 7.25+\$ 7.50+\$ 7.50+\$ 8.00+\$ 8.00+\$ 8.25+\$ 9.00}{8}=\$ 7.81$
Lowest value = \$7.00
Highest value = \$9.00
Median $=\frac{\$ 7.50+\$ 8.00}{2}=\frac{\$ 15.50}{2}=\$ 7.75$ (we do this because we have an even number of data values)

Example 1 (cont.)

$n=8$
$\$ 7.00, \$ 7.25, \$ 7.50, \$ 7.50, \$ 8.00, \$ 8.00, \$ 8.25, \$ 9.00$
$\bar{x}=\frac{\$ 7.00+\$ 7.25+\$ 7.50+\$ 7.50+\$ 8.00+\$ 8.00+\$ 8.25+\$ 9.00}{8}=\$ 7.81$
Lower quartile $=\frac{\$ 7.25+\$ 7.50}{2}=\frac{\$ 14.75}{2}=\$ 7.38$ (we do this because we have an even number of data values)

Upper quartile $=\frac{\$ 8.00+\$ 8.25}{2}=\frac{\$ 16.25}{2}=\$ 8.13$ (we do this because we have an even
number of data values)

Example 1 (cont.)

$n=8$
standard deviation $=\sqrt{\frac{\text { sum of }\left(\text { deviations from the mean) }{ }^{2}\right.}{\text { total number of data values }-1}}$
\$7.00, \$7.25, \$7.50, \$7.50, \$8.00, \$8.00, \$8.25, \$9.00

$$
\bar{x}=\$ 7.81
$$

Standard Deviation
$s=\sqrt{\frac{2.86}{8-1}}=0.64$

Data value	$(\mathbf{x}-\overline{\mathbf{x}})^{2}$
$\$ 7.00$	$(7-7.81)^{2}=0.66$
$\$ 7.25$	$(7.25-7.81)^{2}=0.31$
$\$ 7.50$	$(7.5-7.81)^{2}=0.10$
$\$ 7.50$	$(7.5-7.81)^{2}=0.10$
$\$ 8.00$	$(8-7.81)^{2}=0.04$
$\$ 8.00$	$(8-7.81)^{2}=0.04$
$\$ 8.25$	$(8.25-7.81)^{2}=0.19$
$\$ 9.00$	$(9-7.81)^{2}=1.42$
Total	2.86

Example 1 Continued

$\$ 7.00, \$ 7.25, \$ 7.50, \$ 7.50, \$ 8.00, \$ 8.00, \$ 8.25, \$ 9.00$ Sorted Data

n	Mean (\bar{x})	Low Value	Lower Quartile	Median	Upper Quartile	High Value	Standard Deviation
8	$\$ 7.81$	$\$ 7.00$	$\$ 7.38$	$\$ 7.75$	$\$ 8.13$	$\$ 9.00$	$\$ 0.64$

Pay For A Meal

Example 2

For the following dataset find complete the table below, then create a boxplot.
Suppose that 20 statistics students' scores on an exam are as follows: $97,92,88,75,83,67,89,55,72,78,81,91,57,63,67,74,87,84,98,46$

\boldsymbol{n}	Mean $(\overline{\boldsymbol{x}})$	Low Value	Lower Quartile	Median	Upper Quartile	High Value	Standard Deviation
20	77.2	46	67	79.5	88.5	98	14.52

Statistics Students' Scores

