Quantitative Skills & Reasoning – Math 1001

Dr. Bob Brown, Jr. Dean Emeritus Professor Emeritus East Georgia State College Data Analysis Unit Five Number Summary pp 271-278 in textbook

Quartiles

- The **lower quartile** (or first quartile) divides the lowest fourth (25%) of a data set from the upper three-fourths. It is the median of the data values in the *lower half* of a data set.
- The middle quartile (or second quartile) is the overall median (50%).
- The **upper quartile** (or third quartile) divides the lower three-fourths (75%) of a data set from the upper fourth. It is the median of the data values in the *upper half* of a data set.

Five-Number Summary

The **five-number summary** for a data set consists of the following five numbers:

lowest value lower quartile median upper quartile highest value

Boxplots

A **boxplot** shows the five-number summary visually, with a rectangular box enclosing the lower and upper quartiles, a line marking the median, and whiskers extending to the low and high values.

Example 1

For the following dataset find complete the table below, then create a boxplot.

A group of students were asked how much they would pay for a meal. Their responses were: \$7.50, \$8.25, \$9.00, \$8.00, \$7.25, \$7.50, \$8.00, \$7.00.

n	Mean (\overline{x})	Low Value	Lower Quartile	Median	Upper Quartile	High Value	Standard Deviation

Example 1 (cont.)

n = 8

\$7.00, \$7.25, \$7.50, **<u>\$7.50</u>**, **\$8.00**, \$8.00, \$8.25, \$9.00 Sorted Data

$$\bar{x} = \frac{\$7.00 + \$7.25 + \$7.50 + \$7.50 + \$8.00 + \$8.00 + \$8.25 + \$9.00}{8} = \$7.81$$

Lowest value = \$7.00 Highest value = \$9.00 Median = $\frac{\$7.50+\$8.00}{2} = \frac{\$15.50}{2} = \7.75 (we do this because we have an even number of data values)

7

Example 1 (cont.)

n = 8

<u>\$7.00, \$7.25, \$7.50, \$7.50, \$8.00, \$8.00, \$8.25, \$9.00</u>

 $\bar{x} = \frac{\$7.00 + \$7.25 + \$7.50 + \$7.50 + \$8.00 + \$8.00 + \$8.25 + \$9.00}{8} = \$7.81$ Lower quartile = $\frac{\$7.25 + \$7.50}{2} = \frac{\$14.75}{2} = \7.38 (we do this because we have an even number of data values)
Upper quartile = $\frac{\$8.00 + \$8.25}{2} = \frac{\$16.25}{2} = \8.13 (we do this because we have an even number of data values)

8

Example 1 (con	t.)	$(deviations from the mean)^2$				
standard deviation = $\sqrt{\frac{\text{sum of (deviations from the mean n = 8)}}{\text{total number of data values -1}}}$						
\$7.00, \$7.25, \$7.50, \$	57.50, \$8.00, \$8.00, \$8.25,	\$9.00				
	Data value	$(x-\bar{x})^2$				
$\bar{x} = \$7.81$	\$7.00	$(7 - 7.81)^2 = 0.66$				
Standard Deviation	\$7.25	$(7.25 - 7.81)^2 = 0.31$				
	\$7.50	$(7.5 - 7.81)^2 = 0.10$				
$s = \sqrt{\frac{2.86}{8-1}} = 0.64$	\$7.50	$(7.5 - 7.81)^2 = 0.10$				
$s = \sqrt{\frac{8-1}{8-1}} = 0.64$	\$8.00	$(8 - 7.81)^2 = 0.04$				
N	\$8.00	$(8 - 7.81)^2 = 0.04$				
	\$8.25	$(8.25 - 7.81)^2 = 0.19$				
	\$9.00	$(9 - 7.81)^2 = 1.42$				
	Total	2.86				
		9				

Example 1 Continued

\$7.00, \$7.25, \$7.50, **<u>\$7.50, \$8.00,</u>** \$8.00, \$8.25, \$9.00 Sorted Data

n	Mean (\overline{x})	Low Value	Lower Quartile	Median	Upper Quartile	High Value	Standard Deviation
8	\$ 7.81	\$7.00	\$7.38	\$7.75	\$8.13	\$9.00	\$0.64

Example 2

For the following dataset find complete the table below, then create a boxplot.

Suppose that 20 statistics students' scores on an exam are as follows: 97, 92, 88, 75, 83, 67, 89, 55, 72, 78, 81, 91, 57, 63, 67, 74, 87, 84, 98, 46

n	Mean (\overline{x})	Low Value	Lower Quartile	Median	Upper Quartile	High Value	Standard Deviation
20	77.2	46	67	79.5	88.5	98	14.52

Statistics Students' Scores

Quai		e Skills st 1 Gr	Minimum: 17
17	70	95	Maximum: 100 90- First quartile: 63 85-
36	70	95	Third quartile: 95 Interquartile Range: 32
38	75	100	Outliers: none 75-
40	77	100	DEG 70-
45	78	100	1-Var: 13,1 1:n=31 0V ==74, 20047740
52	80	100	2:x=74.70967742 3↓Sx=22.84140035
57	83	100	DEG 50-
63	85	100	1-Var: 13,1 710102=17
64	85	100	8:Q1=63
65.5	90		9↓Med=78
65.5	90		1-var:13,1
			97Med=78 A:Q3=95 IBEmaxX=100