Quantitative Skills \& Reasoning - Math 1001

Dr. Bob Brown, Jr.
Dean Emeritus

Professor Emeritus
East Georgia State College
Data Analysis Unit
Measure of Center and Variation
pp 262-270 in textbook

Height of Adult Women and Men

Within-group variation and between-group overlap are significant

Measures of Center Tendency

The distribution of a variable (or data set) refers to the way its values are spread over all possible values. A distribution can be shown visually with a table or graph.

Mean

The arithmetic mean, is what we most commonly call the "average". It is defined as follows

$$
\text { mean }=\frac{\text { sum of all values }}{\text { total number of values }}
$$

Median

The median is the middle value when the dataset is sorted in numerical order (or halfway between the two middle values if the number of values is even).

Mode

The mode is the most common value (or group of values) in a distribution.

Outlier

An outlier is a data value that is much higher or much lower than almost all other values. Outliers almost always affects the mean of a dataset.

Range

The range is the difference between the maximum value and the minimum value of the dataset.

Standard Deviation

The standard deviation is a measure of variation based on measuring how far each data value deviates, or is different, from the mean.
A few important characteristics:

- Standard deviation is always positive. Standard deviation will be zero if all the data values are equal, and will get larger as the data spreads out.
- Standard deviation has the same units as the original data.
- Standard deviation, like the mean, can be highly influenced by outliers.

Standard Deviation (cont.)

standard deviation $=\sqrt{\frac{\text { sum of }\left(\text { deviations from the mean) }{ }^{2}\right.}{\text { total number of data values }-1}}$

Standard deviation can be written symbolically using the following formula

$$
s=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
$$

$$
\begin{aligned}
& \mathrm{s}=\text { standard deviation } \\
& \mathrm{x}_{\mathrm{i}}=\text { individual data value } \\
& \overline{\mathrm{x}}=\text { mean } \\
& \mathrm{n}=\text { total number of data values } \\
& \sum=\text { summation or sum of }
\end{aligned}
$$

Examples

For the following dataset of T-shirts sold per week by a student who started his own online T-shirt business, find the mean, median, and mode:
$n=12$
Mean $(\bar{x})=7$
Median $=6$
Mode $=3$
Range $=9$
S.D. $=4.11$

T-Shirts Sold per Week	Frequency
3	5
6	2
9	1
12	4

Range $=12-3=9$

Mean \& Standard Deviation

$$
3,3,3,3,3,6,6,9,12,12,12,12
$$

Mean $(\bar{x})=(3+3+3+3+3+6+6+9+12+12+12+12) / 12=7$

$$
\begin{aligned}
\text { S.D. } & =\sqrt{\begin{array}{r}
{\left[(3-7)^{2}+(3-7)^{2}+(3-7)^{2}+(3-7)^{2}+(3-7)^{2}+(6-7)^{2}\right.} \\
+(6-7)^{2}+(9-7)^{2}+(12-7)^{2}+(12-7)^{2}+(12-7)^{2} \\
\left.+(12-7)^{2}\right] / 11
\end{array}} \\
& =4.11
\end{aligned}
$$

Examples

For the following dataset of T-shirts sold per week by a student who started his own online T-shirt business, find the mean, median, and mode:
$n=12$
Mean $(\bar{x})=7$
Median $=6$
Mode $=3$
Range $=9$
S.D. $=4.11$

T-Shirts Sold per Week	Frequency
3	5
6	2
9	1
12	4

Examples

For the following dataset of contract offers, find the mean, median, mode, range, and standard deviation:
$\$ 50,000 \quad \$ 80,000 \quad \$ 100,000 \quad \$ 90,000 \quad \$ 10,000,000$
Put in ascending order ($\mathrm{n}=5$)
$\$ 50,000 \quad \$ 80,000 \quad \$ 90,000 \quad \$ 100,000 \quad \$ 10,000,000$
Mean $=(50,000+80,000+90,000+100,000+10,000,000) / 5$
= \$2,064,000
Range $=\$ 10,000,000-\$ 50,000=\$ 9,950,000$

For the following dataset of contract offers, find the mean, median, mode, range, and standard deviation:
$\$ 50,000 \quad \$ 80,000 \quad \$ 90,000 \quad \$ 100,000 \quad \$ 10,000,000$
Mean = \$2,064,000
$(50000-2064000)^{2}=4.056196 \times 10^{12}$
$(80000-2064000)^{2}=3.936256 \times 10^{12}$
$(90000-2064000)^{2}=3.896676 \times 10^{12}$
$(100000-2064000)^{2}=3.857296 \times 10^{12}$
$(10000000-2064000)^{2}=6.2980096 \times 10^{13}$
Sum $=7.872652 \times 10^{13}$ Sum $/ 4=1.968163 \times 10^{13}$

$$
S_{x}=\sqrt{19.68163 \times 10^{12}}=4,436,398.31
$$

Examples

For the following dataset of contract offers, find the mean, median, mode, range, and standard deviation:
$\$ 50,000 \quad \$ 80,000 \$ 100,000 \quad \$ 90,000 \quad \$ 10,000,000$
$n=5$
outlier: $\$ 10,000,000$

Mean $(\bar{x})=\$ 2,064,000$
Median = \$90,000
Mode = none
Range = \$9,950,000
S.D. = \$4,436,398.31

Examples

For the following dataset of gallons of gasoline purchased by 28 drivers, find the mean, median, and mode:
$7,4,18,4,9,8,8,7,6,2,9,5,9,12,4,14,15,7,10,2,3,11,4,4,9,12,5,3$ Sorted
$2,2,3,3,4,4,4,4,4,5,5,6,7, \underline{7}, 7,8,8,9,9,9,9,10,11,12,12,14,15,18$
Mode $4 \quad$ Median $=(7+7) / 2=7 \quad$ Range $=18-2=16$
Put numbers in calculator to find mean and Standard Deviation Check You Work - Input numbers and check them

Examples

For the following dataset of gallons of gasoline purchased by 28 drivers, find the mean, median, and mode:
$7,4,18,4,9,8,8,7,6,2,9,5,9,12,4,14,15,7,10,2,3,11,4,4,9,12,5,3$
$\boldsymbol{n}=28$
Mean $(\bar{x})=7.54$
Median = 7
Mode $=4$
Range $=16$
S.D. $=4.10$

Examples - What about categorical data?

For the following dataset of vehicle colors:
$n=20$
Mean $(\bar{x})=$ none
Median = none
Mode = Green
Range $=$ none
S.D. = none

Color	Frequency
Blue	3
Green	5
Red	4
White	3
Black	2
Grey	3

