Quantitative Skills & Reasoning – Math 1001

Dr. Bob Brown, Jr. Dean Emeritus Professor Emeritus East Georgia State College Introduction to Modeling Unit Quadratic Models

Quadratic Functions

<u>Definition</u>: A quadratic function has the form $y = f(x)=ax^2+bx+c$, where a, b, and c are real numbers and $a \neq 0$. The domain of quadratic functions is the set of all real numbers. The graph of a quadratic function is called a parabola.

The axis of symmetry is defined by

$$x = -\frac{b}{2a}$$

The x intercepts (where y = 0) can be calculated by The famous Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

An alternate form of the quadratic function is $y = f(x) = a(x - h)^2 + k$ where $h = -\frac{b}{2a}$ and k is the min or max value of the function. $k = f(h) = f(-\frac{b}{2a})$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Note the discriminant is $b^2 - 4ac$

If $b^2 - 4ac > 0$, there are two real roots (zeros)

If $b^2 - 4ac < 0$, there are two complex conjugate roots (zeros)

If $b^2 - 4ac = 0$, there are two equal real roots (zeros)

Given
$$f(x) = x^2 + 4x + 3$$

Identify the coefficients:

a = b = c =

Use the discriminant, $b^2 - 4ac$, to determine the type and number of solutions:

 $b^2 - 4ac =$

Does the function open up or down?

Does the function have a minimum or maximum value?

Given $f(x) = x^2 + 4x + 3$

Find the axis of symmetry.
$$f(x) = x^2 + 4x + 3$$

The axis of symmetry is defined by b

$$x = -\frac{b}{2a}$$

Find the vertex.

The vertex is (h, k) where $h = -\frac{b}{2a}$ and k is the min or max value of the function. $k = f(h) = f(-\frac{b}{2a})$

Find the intercepts.

$$f(x) = x^2 + 4x + 3$$

y-intercept

x-intercepts $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Graph the function using its vertex, A.O.S., and intercepts.

Application Problems

A ball is thrown in the air and the equation $H(t) = -16t^2 + 60t + 6$ is used to model its height, in feet, as a function of time. Calculate the maximum height the ball achieves by hand and showing all work. Also, find the time when the ball will hit the ground.

Use the discriminant, $b^2 - 4ac$, to determine the type and number of solutions:

Note the -16t² in the equation is due to the force of gravity causing the ball to return to earth

 $H(t) = -16t^2 + 60t + 6$

Does the function open up or down?

Does the function have a minimum or maximum value?

 $H(t) = -16t^2 + 60t + 6$

Find the axis of symmetry (time the ball reaches its maximum height).

Find the vertex. $H(t) = -16t^2 + 60t + 6$

The vertex is
$$(h, k)$$
 where $h = -\frac{b}{2a}$ and
 k is the min or max value of the function.
 $k = f(h) = f(-\frac{b}{2a})$

Find the intercepts.

y-intercept (height where the ball is thrown from).

x-intercepts (when the ball reaches the ground). $t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Graph the function using its vertex, A.O.S., and intercents *H feet*

Graph the function using its vertex, A.O.S., and intercepts. *H feet*

Application Problems

A bottle rocket that takes off at a velocity of 200ft/sec from a height of 2 feet. The constant for gravity is -16 feet/second squared. Create a quadratic equation to model the height as a function of time.

 $H(t) = -16t^2 + 200t + 2$

Use the discriminant, $b^2 - 4ac$, to determine the type and number of solutions:

Does the function open up or down?

 $H(t) = -16t^2 + 200t + 2$

Does the function have a minimum or maximum value?

 $H(t) = -16t^2 + 200t + 2$

Find the axis of symmetry (time the rocket reaches its maximum height). H(t) = -16t² + 200t + 2

$$\mathbf{x} = h = -\frac{b}{2a}$$

Find the vertex. $H(t) = -16t^2 + 200t + 2$

The vertex is (h, k) where $h = -\frac{b}{2a}$ and k is the min or max value of the function. $k = f(h) = f(-\frac{b}{2a})$

Find the intercepts.

y-intercept (height where the rocket is launched from).

 $H(t) = -16t^2 + 200t + 2$

x-intercepts (when the rocket reaches the ground).

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Graph the function using its vertex, A.O.S., and intercepts.

Application Problems

Suppose the cost of producing x crates of pencils is given by

$$C(x) = \frac{1}{2}x^2 - 10x + 1000$$

Use the discriminant, $b^2 - 4ac$, to determine the type and number of solutions:

Does the function open up or down? $C(x) = \frac{1}{2}x^2 - 10x + 1000$

Does the function have a minimum or maximum value?

$$C(x) = \frac{1}{2}x^2 - 10x + 1000$$

Find the axis of symmetry (i.e. number of pencils that produce the minimum cost). $C(x) = \frac{1}{2}x^2 - 10x + 1000$

Find the vertex.

$$C(x) = \frac{1}{2}x^2 - 10x + 1000$$

$$\mathbf{x} = h = -\frac{b}{2a}$$

Find the intercepts.

y-intercept (starting cost of production).

x-intercepts (when cost is zero).

$$\mathbf{x} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

A Newspaper developed a formula to calculate the revenue R as a function of the quarterly subscription fee x. $R(x) = -2500x^2 + 159000x$

Determine the optimum fee x that will maximize revenue and sketch a graph of R(x). What is the maximum revenue?

R Revenue Dollars