Quantitative Skills \& Reasoning - Math 1001

Dr. Bob Brown, Jr.
Dean Emeritus

Professor Emeritus
East Georgia State College
Introduction to Modeling Unit
Quadratic Models

Quadratic Functions

Definition: A quadratic function has the form $\mathrm{y}=\mathrm{f}(\mathrm{x})=a \mathrm{x}^{2}+b \mathrm{x}+c$, where a, b, and c are real numbers and $a \neq 0$. The domain of quadratic functions is the set of all real numbers. The graph of a quadratic function is called a parabola.

$$
\begin{gathered}
a<0 \\
\text { Opens Down }
\end{gathered}
$$

The axis of symmetry is defined by

$$
x=-\frac{b}{2 a}
$$

The x intercepts (where $y=0$) can be calculated by The famous Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

An alternate form of the quadratic function is $\mathrm{y}=f(x)=a(x-h)^{2}+k$ where $h=-\frac{b}{2 a}$ and k is the min or max value of the function.

$$
k=f(h)=f\left(-\frac{b}{2 a}\right)
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\text { Note the discriminant is } b^{2}-4 a c
$$

If $b^{2}-4 a c>0$, there are two real roots (zeros)
If $b^{2}-4 a c<0$, there are two complex conjugate roots (zeros)
If $b^{2}-4 a c=0$, there are two equal real roots (zeros)

Given $f(x)=x^{2}+4 x+3$

Identify the coefficients:
$\mathrm{a}=$
$\mathrm{b}=$
$C=$

Use the discriminant, $b^{2}-4 a c$, to determine the type and number of solutions:

$$
b^{2}-4 a c=
$$

Does the function open up or down?

Does the function have a minimum or maximum value?

Given $f(x)=x^{2}+4 x+3$

Find the axis of symmetry.

$$
f(x)=x^{2}+4 x+3
$$

The axis of symmetry is defined by

$$
x=-\frac{b}{2 a}
$$

Find the vertex.

The vertex is (h, k) where $h=-\frac{b}{2 a}$ and
k is the min or max value of the function.

$$
k=f(h)=f\left(-\frac{b}{2 a}\right)
$$

Find the intercepts.

$$
f(x)=x^{2}+4 x+3
$$

x-intercepts

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Graph the function using its vertex, A.O.S., and intercepts.

Application Problems

A ball is thrown in the air and the equation $H(t)=-16 t^{2}+60 t+6$ is used to model its height, in feet, as a function of time. Calculate the maximum height the ball achieves by hand and showing all work. Also, find the time when the ball will hit the ground.

Use the discriminant, $b^{2}-4 a c$, to determine the type and number of solutions:

Note the $\mathbf{- 1 6 t}{ }^{\mathbf{2}}$ in the equation is due to the force of gravity causing the ball to return to earth
$H(t)=-16 t^{2}+60 t+6$
Does the function open up or down?

Does the function have a minimum or maximum value?
$H(t)=-16 t^{2}+60 t+6$
Find the axis of symmetry (time the ball reaches its maximum height).

Find the vertex.

$$
H(t)=-16 t^{2}+60 t+6
$$

The vertex is (h, k) where $h=-\frac{b}{2 a}$ and
k is the min or max value of the function.

$$
k=f(h)=f\left(-\frac{b}{2 a}\right)
$$

Find the intercepts.

y-intercept (height where the ball is thrown from).
x-intercepts (when the ball reaches the ground).

$$
t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Graph the function using its vertex, A.O.S., and intercents. H feet

Graph the function using its vertex, A.O.S., and intercepts.

Application Problems

A bottle rocket that takes off at a velocity of $200 \mathrm{ft} / \mathrm{sec}$ from a height of $\mathbf{2}$ feet. The constant for gravity is $\mathbf{- 1 6}$ feet/second squared. Create a quadratic equation to model the height as a function of time.

$$
H(t)=-16 t^{2}+200 t+2
$$

Use the discriminant, $b^{2}-4 a c$, to determine the type and number of solutions:

Does the function open up or down?

$$
H(t)=-16 t^{2}+200 t+2
$$

Does the function have a minimum or maximum value?

$$
H(t)=-16 t^{2}+200 t+2
$$

Find the axis of symmetry (time the rocket reaches its maximum height). $\quad \boldsymbol{H}(\mathrm{t})=-\mathbf{1 6 t ^ { 2 } + 2 0 0 t + 2}$

$$
\mathrm{x}=h=-\frac{b}{2 a}
$$

Find the vertex.

$$
H(t)=-16 t^{2}+200 t+2
$$

The vertex is (h, k) where $h=-\frac{b}{2 a}$ and
k is the min or max value of the function.

$$
k=f(h)=f\left(-\frac{b}{2 a}\right)
$$

Find the intercepts.

y-intercept (height where the rocket is launched from).

$$
H(t)=-16 t^{2}+200 t+2
$$

x-intercepts (when the rocket reaches the ground).

$$
t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Graph the function using its vertex, A.O.S., and intercepts.
$H(t)=-16 t^{2}+200 t+2$

Application Problems

Suppose the cost of producing x crates of pencils is given by

$$
C(x)=\frac{1}{2} x^{2}-10 x+1000
$$

Use the discriminant, $b^{2}-4 a c$, to determine the type and number of solutions:

Does the function open up or down?

$$
C(x)=\frac{1}{2} x^{2}-10 x+1000
$$

Does the function have a minimum or maximum value?

$$
C(x)=\frac{1}{2} x^{2}-10 x+1000
$$

Find the axis of symmetry (i.e. number of pencils that produce the minimum cost).
$c(x)=\frac{1}{2} x^{2}-10 x+1000$

Find the vertex.

$$
C(x)=\frac{1}{2} x^{2}-10 x+1000
$$

$$
\mathrm{x}=h=-\frac{b}{2 a}
$$

Find the intercepts.

y -intercept (starting cost of production).
x-intercepts (when cost is zero).

$$
\mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Graph the function $\quad \boldsymbol{C}(\boldsymbol{x})=\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{x}^{2}-\mathbf{1 0 x}+\mathbf{1 0 0 0}$

$$
C(x)=\frac{1}{2} x^{2}-10 x+1000
$$

A Newspaper developed a formula to calculate the revenue R as a function of the quarterly subscription fee x.

$$
R(x)=-2500 x^{2}+159000 x
$$

Determine the optimum fee x that will maximize revenue and sketch a graph of $R(x)$. What is the maximun revenue?

R Revenue Dollars

