Quantitative Skills \& Reasoning - Math 1001

Dr. Bob Brown, Jr.
Dean Emeritus

Professor Emeritus
East Georgia State College
Probability Unit - The Normal Distribution

Probability Distributions In General

The Area Under The Curve Is 1.0 For All Distributions (100\%)

The Probability Of A Number Being Between a_{1} and $a_{2}=$ Area Under The Curve

Probability Distributions In General

Uniform Distribution

Normal Distribution

Triangle Distribution

The Area Under The Curve Is 1.0 For All Distributions (100\%)

The Probability Of A Number Being Between a_{1} and $a_{2}=$ Area Under The Curve

The Normal Distribution

- The Normal Distribution is a symmetric, bell-shaped distribution with a single peak. This peak in the distribution corresponds to the mean, median, and mode.

The Normal Distribution Facts

- Because the distribution is symmetric, 50% of the data values are below the mean, and 50% of the data values are above the mean.
- Data values farther from the mean become increasingly rare.
- The graph of the Normal Distribution is bell-shaped, with tapering tails that approach, but never actually touch the horizontal axis.
- Almost all of the area under a Normal Distribution curve is within three standard deviations of the mean.
- The total area under the curve is 1 (100\%)

The Empirical Rule (68-95-99.7 Rule)

Notation
$\mu=$ mean
$\sigma=$ standard deviation

Example

The test scores on a math exam are approximately normally distributed with mean 72 and standard deviation 8 . Draw the associated normal distribution curve, and label the axis appropriately.

Example

The test scores on a math exam are approximately normally distributed with mean 72 and standard deviation 8 . Draw the associated normal distribution curve, and label the axis appropriately.

Example

Scores on a standardized test were normally distributed with a mean of 510 and a standard deviation of 95 . Use the Empirical Rule to complete following statements. Also, draw and label a sketch of the distribution.

- 68% of the students taking this exam scored between \qquad and \qquad .
- 95% of the students taking this exam scored between \qquad and \qquad .
- 99.7% of the students taking this exam scored between \qquad and \qquad .

Example

Scores on a standardized test were normally distributed with a mean of 510 and a standard deviation of 95 . Use the Empirical Rule to complete following statements. Also, draw and label a sketch of the distribution.

- 68% of the students taking this exam scored between 415 and 605.
- 95% of the students taking this exam scored between 320 and 700.
- 99.7% of the students taking this exam scored between 225 and 795.

Example (cont.)

Example (cont.)

Example

Gear circumferences for a manufactured bicycle part were normally distributed with a mean of 34 inches and a standard deviation of 0.04 inches.

- 68% of the gear circumferences were between \qquad and \qquad .
- 95% of the gear circumferences were between \qquad and \qquad .
- 99.7% of the gear circumferences were between \qquad and \qquad .

Example

Gear circumferences for a manufactured bicycle part were normally distributed with a mean of 34 inches and a standard deviation of 0.04 inches.

- 68% of the gear circumferences were between 33.96 and 34.04.
- 95% of the gear circumferences were between 33.92 and 34.08.
- 99.7% of the gear circumferences were between 33.88 and 34.12 .

Example (cont.)

Standard Scores (z-scores)

- The Empirical Rule only applies when a value is exactly 1, 2, or 3 standard deviations away from the mean. This is not usually the case. Therefore, we use a standard score (also called " z-score") to find the number of standard deviations a data value is from the mean of the distribution.
- We can plot z -scores on a special normal distribution called the standard normal distribution. The standard normal distribution is a normal distribution that always has a population mean of 0 and population standard deviation of 1 .

Standard Scores (z-scores) cont.

- If z is positive, then the data value is above the mean.
- If z is negative, then the data value is below the mean.
- It can be helpful to sketch the distribution to verify the z-score.

$$
z=\frac{x-\mu}{\sigma}=\frac{x-\text { mean }}{\text { standard deviation }}
$$

Example

Scores on a standardized test were normally distributed with a mean of 510 and a standard deviation of 95 . A student scores 365 points on the test. What is his standard score?

Example (cont.)

Example (cont.)

Scores on a standardized test were normally distributed with a mean of 510 and a standard deviation of 95 . Suppose a student's z-score is 2.2, what did the student score on the test?

