Quantitative Skills \& Reasoning - Math 1001

Dr. Bob Brown, Jr.
Dean Emeritus

Professor Emeritus
East Georgia State College
Zoom Video Conference 10-03-2019

1. Test 2 Results
2. Concepts Some Missed
3. Questions
4. Overview of Functions On Next Unit
5. A Great On-Line Graphing Application

Population size: 29
Median: 82.8
Minimum: 56
Maximum: 100
First quartile: $\mathbf{7 0 . 7}$
Third quartile: $\mathbf{8 8 . 8 5}$
Interquartile Range: 18.15
Mean 80.6

Test 2 Grades

Concept Not Understood by Some - Quartile Understanding

Population size: 29
Median: $\mathbf{8 2 . 8}$
Minimum: 56
Maximum: 100
First quartile: 70.7
Third quartile: $\mathbf{8 8 . 8 5}$
Interquartile Range: 18.15
Mean 80.6
Test 2 Grades

Concept Not Understood by Some - Sampling Methods

Concept Not Understood by Some - Data Types

Phone Number is not Numerical, It is Categorical

Birth Year is Numerical - The Number Leads To Numerical Info

Concept Not Understood by Some - Not Double Checking Data!

Do it Twice

The slope of the graph of the equation $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ is m, and the y-intercept of the graph is b.

If a nonvertical line passes through the points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$, Its slope is found using the formula

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

The equation of the line with slope m and passing through a known point $\left(x_{1}, y_{1}\right)$ is

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Quadratic Functions

Definition: A quadratic function has the form $\mathrm{y}=\mathrm{f}(\mathrm{x})=a \mathrm{x}^{2}+b \mathrm{x}+c$, where a, b, and c are real numbers and $a \neq 0$. The domain of quadratic functions is the set of all real numbers. The graph of a quadratic function is called a parabola.

$$
\begin{gathered}
a<0 \\
\text { Opens Down }
\end{gathered}
$$

The axis of symmetry is defined by

$$
x=-\frac{b}{2 a}
$$

The x intercepts (where $y=0$) can be calculated by The famous Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

An alternate form of the quadratic function is $\mathrm{y}=f(x)=a(x-h)^{2}+k$ where $h=-\frac{b}{2 a}$ and k is the min or max value of the function.

$$
k=f(h)=f\left(-\frac{b}{2 a}\right)
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\text { Note the discriminant is } b^{2}-4 a c
$$

If $b^{2}-4 a c>0$, there are two real roots (zeros)
If $b^{2}-4 a c<0$, there are two complex conjugate roots (zeros)
If $b^{2}-4 a c=0$, there are two equal real roots (zeros)

Exponential Growth

If a quantity starts at size P_{0} and grows by $R \%$ (written as a decimal, r) every time period, then the quantity after n time periods can be determined using either of these relations:

Recursive form: $\quad P_{\underline{n}}=(1+r) P_{n-1}$

Explicit form: $\quad P_{n}=P_{0}(1+r)^{n}$

We call r the growth rate.
The term $(1+r)$ is called the growth multiplier, or common ratio.

Where Have We Seen This Before?

$$
F V=P V\left(1+\frac{\mathrm{r}}{n}\right)^{(n t)} \quad \text { Exponent }
$$

Compound interest is interest paid on both the original principal and on all interest that has been added to the original principal.
FV = accumulated balance after t years (Future Value)
PV = starting principal (Present Value)
$r=$ annual percentage rate (as a decimal)
$t=$ number of years
$\mathrm{n}=$ number of compounding periods (e.g. annually, semi-annually, quarterly, monthly, daily)

Recursive form: $\quad P_{\underline{n}}=(1+r) P_{n-1}$

Explicit form: $\quad P_{n}=\mathrm{P}_{0}(1+r)^{n}$

We call r the growth rate.
The term ($1+r$) is called the growth multiplier, or common ratio.

Moore's Law - The number of transistors on integrated circuit chips (1971-2018)
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important as other aspects of technological progress - such as processing speed or the price of electronic products - are
linked to Moore's law.

MOSFET scaling
(process nodes)
$10 \mu \mathrm{~m}-1971$
$6 \mu \mathrm{~m}-1974$
$3 \mu \mathrm{~m}-1977$
$1.5 \mu \mathrm{~m}-1981$
$1 \mu \mathrm{~m}-1984$
$800 \mathrm{~nm}-1987$
$600 \mathrm{~nm}-1990$
350 nm - 1993
$250 \mathrm{~nm}-1996$
$180 \mathrm{~nm}-1999$
$130 \mathrm{~nm}-2001$
$90 \mathrm{~nm}-2003$
$65 \mathrm{~nm}-2005$
$45 \mathrm{~nm}-2007$
32 nm - 2009
22 nm-2012
$14 \mathrm{~nm}-2014$
$10 \mathrm{~nm}-2016$
$7 \mathrm{~nm}-2018$
$5 \mathrm{~nm}-2019$
$3 \mathrm{~nm}-\sim 2021$

A Great On-Line Graphing Website

https://www.desmos.com/calculator

