Student: _____

Instructor: Robert Brown

Course: Calculus I Spring 2019 Math 1540 Dr. Bob Brown CRN 20506

Assignment: Calculus I Test 1 Practice

1. Find the limit.

$$\lim_{x \to 4} \sqrt{x^2 + 4x + 4}$$

- **A.** -6
- **B**. 6
- O C. 36
- O. The limit does not exist.

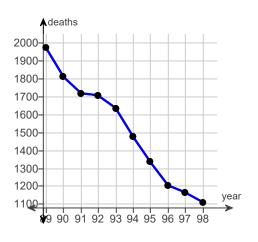
ID: 2.2-13

2. Find the average rate of change of the function over the given interval.

$$y = -3x^2 - x$$
, [5, 6]

- A. -34
- O B. $\frac{1}{2}$
- **C**. -2
- \bigcirc **D.** $-\frac{1}{6}$

ID: 2.1-5

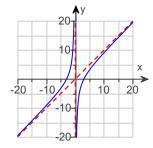

3. Find the limit, if it exists.

$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 6x + 8}$$

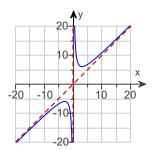
- **A.** -1
- **B.** 0
- **C**. -2
- O D. The limit does not exist.

ID: 2.2-34

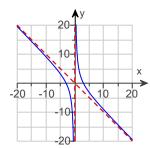
4. The graph below shows the number of deaths in a country from a certain disease from 1989 to 1998. Estimate the average rate of change in deaths from this disease from 1991 to 1996.


- A. About 60 deaths per year
- **B.** About 0.9 deaths per year
- C. About 500 deaths per year
- O D. About 100 deaths per year

- ID: 2.1-16
- 5. Graph the rational function. Include the graphs of the asymptotes.


$$y = \frac{x^2 + 9}{x}$$

Choose the correct graph of the rational function below.


O A.

O B.

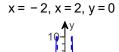
O C.

ID: 2.6.103

6. Find the limit.

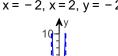
$$\lim_{x \to 4^{-}} \frac{3}{x^2 - 16}$$

- O A. -∞
- **B**. 0
- C. ∞
- **D.** 1

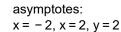

ID: 2.6-24

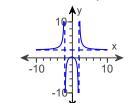
7. Graph the rational function. Include the graphs and equations of the asymptotes.

$$f(x) = \frac{2x^2}{4 - x^2}$$

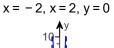

A.

asymptotes:




O B.

asymptotes:
$$x = -2$$
, $x = 2$, $y = -2$


O C.

O D.

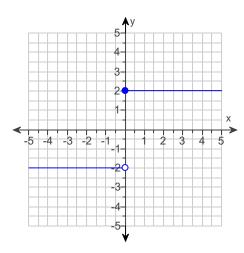
8. Find the limit.

$$\lim_{x \to \infty} \frac{3}{4 - \left(1/x^2\right)}$$

- **A.** 1
- **B**. 3
- O. -∞
- \bigcirc **D**. $\frac{3}{4}$

ID: 2.6-8

9. Find the limit.

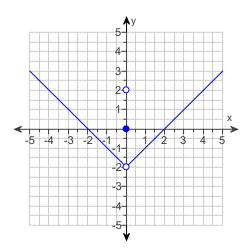

$$\lim_{x \to \infty} \frac{2x + 1}{9x - 7}$$

- **B.** 0
- \circ **c**. $-\frac{1}{7}$
- O D. ∞

ID: 2.6-11

10. Use the graph to evaluate the limit.

$$\lim_{x\to 0} f(x)$$



ID: 2.2-5

- **O A**. 1
- **B.** -1
- O C. ∞
- O. The limit does not exist.

11. Use the graph to evaluate the limit.

$$\lim_{x\to 0} f(x)$$

ID: 2.2-6

- **A.** 0
- OB. 2
- C. -2
- O. The limit does not exist.

12. Explain why the limit does not exist.

$$\lim_{x\to 0} \frac{x}{|x|}$$

Fill in the blanks in the following statement, and then answer the multiple choice below.

As x approaches 0 from the left, $\frac{x}{|x|}$ approaches (1) ______. As x approaches 0 from the right, $\frac{x}{|x|}$ approaches

- (2) ______.
- \bigcirc **A.** Since the function is not defined at x = 0, there is no way of knowing the limit as x \rightarrow 0.
- \bigcirc **B.** There is no single number L that the function values all get arbitrarily close to as $x \rightarrow 0$.
- (1) O -1 (2) O -O 1 O 0
- ID: 2.2.5
- 13. Suppose that a function f(x) is defined for all real values of x in [-1,1]. Can anything be said about the existence of lim f(x)? Give reasons for your answer. x→0
 - **A.** At x = 0, $\lim_{x \to 0} f(x)$ must exist because the function is defined at every point in the interval [-1,1].
 - OB. Nothing can be said about the existence of the limit. Even though the function is defined at every point in the interval [-1,1], there may be a jump or an oscillation at x = 0.
 - **C.** At x = 0, $\lim_{x \to 0} f(x)$ does not exist because it is likely that the function oscillates or jumps at that point.
 - ID: 2.2.8
- 14. Evaluate the following limit.

$$\lim_{x \to 1} (2x^3 - 2x^2 + 4x + 2)$$

$$\lim_{x\to 1} (2x^3 - 2x^2 + 4x + 2) = \underline{\qquad}$$
 (Simplify your answer.)

ID: 2.2.14

15. Use the table of values of $f(\theta) = \frac{\cos(4\theta)}{\theta}$ to estimate $\lim_{\theta \to 0} f(x)$, if it exists.

f()θ	- 0.1	- 0.01	- 0.001	• • •	0.001	0.01	0.1
f(θ)	- 9.2106	- 99.9200	- 999.9920	• • •	999.9920	99.9200	9.2106

A. 0

OB. 4


C. 9.2106

O D. The limit does not exist.

ID: 2.2-52

16. Use the following function and its graph to answer (a) through (d) below.

Let
$$f(x) = \begin{cases} 4 - x, & x < 3 \\ \frac{x}{2} + 1, x > 3. \end{cases}$$

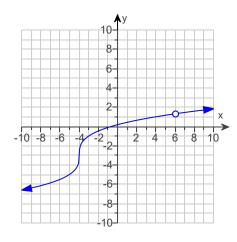
a. Find $\lim_{x \to \infty} f(x)$ and $\lim_{x \to \infty} f(x)$. Select the correct choice below and fill in any answer boxes in your choice.

$$x\rightarrow 3^+$$
 $x\rightarrow 3^-$

- O B. The limit does not exist.
- **b.** Does $\lim_{x\to 3} f(x)$ exist? If so, what is it? If not, why not?
- A. No, $\lim_{x\to 3} f(x)$ does not exist because $\lim_{x\to 3^+} f(x) \neq \lim_{x\to 3^-} f(x)$.
- **B.** Yes, $\lim_{x\to 3} f(x)$ exists and equals 2.5.
- C. Yes, $\lim_{x\to 3} f(x)$ exists and equals 1.
- **D.** No, $\lim_{x\to 3} f(x)$ does not exist because f(3) is undefined.
- **c.** Find $\lim_{x\to 4^+} f(x)$ and $\lim_{x\to 4^-} f(x)$. Select the correct choice below and fill in any answer boxes in your choice.
- A. $\lim_{x \to 4^+} f(x) =$ ______, $\lim_{x \to 4^-} f(x) =$ ______ (Simplify your answer.)
- O B. The limit does not exist.
- **d.** Does $\lim_{x\to 4} f(x)$ exist? If so, what is it? If not, why not?
- \bigcirc **A.** No, $\lim_{x\to 4} f(x)$ does not exist because f(4) is undefined.
- \bigcirc **B.** Yes, $\lim_{x\to 4} f(x)$ exists and equals 0.
- O. No, $\lim_{x\to 4} f(x)$ does not exist because $\lim_{x\to 4^+} f(x) \neq \lim_{x\to 4^-} f(x)$.
- O. Yes, $\lim_{x\to 4} f(x)$ exists and equals 3.

ID: 2.4.3

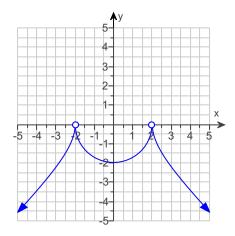
17.


Find
$$\lim_{x\to 9} \frac{x-9}{\sqrt{x+7}-4}$$
.

$$\lim_{x \to 9} \frac{x - 9}{\sqrt{x + 7} - 4} = \underline{\hspace{1cm}}$$

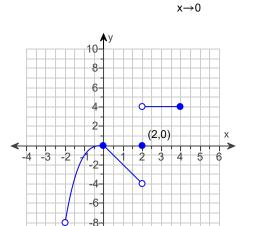
(Type an integer or a simplified fraction.)

ID: 2.2.37


18. Find all points where the function is discontinuous.

- \bigcirc **A.** x = -4
- \bigcirc **B.** x = 6
- \bigcirc **C.** x = -4 and x = 6
- O. There are no points where the function is discontinuous.

ID: 2.5-3


19. Find all points where the function is discontinuous.

ID: 2.5-6

- \bigcirc **A.** x = -2 and x = 2
- \bigcirc **B.** x=2
- \bigcirc **C.** x = -2
- O. There are no points where the function is discontinuous.

20. Let f(x) be defined as shown on the right. The graph of y = f(x) is shown below. Does $\lim_{x \to a} f(x)$ exist?

- $f(x) = \begin{cases} x^3, & -2 < x < 0 \\ -2x, 0 \le x < 2 \\ 0, & x = 2 \\ 4, & 2 < x \le 4 \end{cases}$
 -) No
- Yes

ID: 2.5-9

21. To what new value should f(2) be changed to remove the discontinuity?

$$f(x) = \begin{cases} 2x - 4, x < 2 \\ 2 & x = 2 \\ x - 2, & x > 2 \end{cases}$$

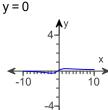
- **A.** 0
- B. -1
- **C.** -7
- D. -8

ID: 2.5-12

22. Find the slope of the curve at the given point P and an equation of the tangent line at P.

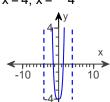
$$y = x^2 + 5x$$
, P(4,36)

- A. The slope of the curve is $-\frac{4}{25}$ at P. The line $y = -\frac{4x}{25} + \frac{8}{5}$ is tangent at P.
- O B. The slope of the curve is $\frac{1}{20}$ at P. The line $y = \frac{x}{20} + \frac{1}{5}$ is tangent at P.
- \bigcirc C. The slope of the curve is 39 at P. The line y = 39x 80 is tangent at P.
- \bigcirc **D.** The slope of the curve is 13 at P. The line y = 13x 16 is tangent at P.

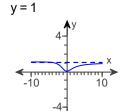

ID: 2.1-7

23. Graph the rational function. Include the graphs and equations of the asymptotes.

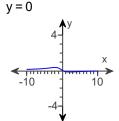
$$f(x) = \frac{x}{x^2 + x + 4}$$


O A.

asymptote: y = 0


О В.

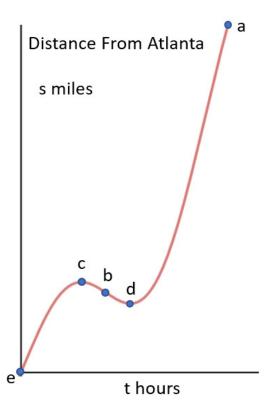
asymptotes: x = 4, x = -4


O C.

asymptote:

O D.

asymptote:


ID: 2.6-33

24. Consider the graph of a car's position versus time and answer the following questions:

At which point is the car's velocity the greatest? _____

A which point is he car going backwards at the highest velocity? _____

At which point is the car stopped and also closest to the starting point? _____

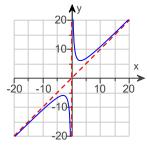
ID: Instructor-created question

- 25. On the far, far, away gigantic planet Cyclops, the distance an object falls after being dropped is given by:
 - $s = 80t^2$ where t is time in seconds after the object is dropped and s is the distance in feet.

Find the average rate of change (velocity) of the objects position over the time interval [0, 2]

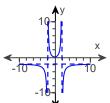
- A. 320 ft/sec
- OB. 160 ft/sec
- Oc. 120 ft/sec
- O D. 240 ft/sec
- ID: Instructor-created question

Find
$$\lim_{x \to -11} \frac{10 - \sqrt{x^2 - 21}}{x + 11}$$
.


$$\lim_{x \to -11} \frac{10 - \sqrt{x^2 - 21}}{x + 11} = \underline{\hspace{1cm}}$$

(Type an integer or a simplified fraction.)

ID: 2.2.41


- 1. B. 6
- 2. A. -34
- 3. C. -2
- 4. D. About 100 deaths per year

5.

- В.
- 6. A. −∞

7.

- B. asymptotes: x = -2, x = 2, y = -2
- 8. D. $\frac{3}{4}$
- 9. A. $\frac{2}{9}$
- 10. D. The limit does not exist.
- 11. C. -2
- 12. (1) -1
 - (2) 1
 - B. There is no single number L that the function values all get arbitrarily close to as $x\rightarrow 0$.

13. B.

Nothing can be said about the existence of the limit. Even though the function is defined at every point in the interval [-1,1], there may be a jump or an oscillation at x = 0.

14.6

15. D. The limit does not exist.

16. A. $\lim_{x \to 3^{+}} f(x) = \underline{\qquad}$, $\lim_{x \to 3^{-}} f(x) = \underline{\qquad}$ (Simplify your answer.)

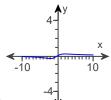
A. No, $\lim_{x\to 3} f(x)$ does not exist because $\lim_{x\to 3^+} f(x) \neq \lim_{x\to 3^-} f(x)$.

A. $\lim_{x\to 4^+} f(x) = \underbrace{\qquad \qquad }_{x\to 4^-}$, $\lim_{x\to 4^-} f(x) = \underbrace{\qquad \qquad }_{x\to 4^-}$ (Simplify your answer.)

D. Yes, $\lim_{x\to 4} f(x)$ exists and equals 3.

17. 8

18. B. x = 6


19. A. x = -2 and x = 2

20. Yes

21. A. 0

22. D. The slope of the curve is 13 at P. The line y = 13x - 16 is tangent at P.

23.

A. asymptote: y = 0

25. B. 160 ft/sec

26. $\frac{11}{10}$