Quantitative Skills \& Reasoning - Math 1001

Dr. Bob Brown, Jr.
Dean Emeritus
Professor Emeritus
East Georgia State College
Zoom Video Conference 9-3-2019

Review: Finding the Percent of the Total

To find the percent of a total, use the following formula:
Percent $=\frac{\text { part }}{\text { whole }}$
part $=$ Percent x whole

```
Working with Percents
\(88 \%\) of the questions on a student's test were correct. There were 50 questions. How many of the questions were correct?
A student who scored \(88 \%\) on the test answered
correctly.
```


Review: Percent of Change

Absolute Change $=\mid$ ending quantity - starting quantity \mid

$$
\text { Relative Change }=\frac{\text { Absolute Change }}{\text { starting quantity }}
$$

Absolute Change will always be zero or positive and will result in an increase or decrease of the starting quantity.

Relative Change will be in decimal form. Be sure to convert your answer to a percent.

Applications of Percent: Discount \& Sale Price

The sales tax rate for the state of Washington was 8.1%.

What is the state sales tax on a \$4,700 car in Washington?

What is the final cost of the car, including tax?

Simple Interest

Definitions

The principal in financial formulas is the balance upon which interest is paid.

Simple interest is interest paid only on the original principal, and not on any interest added at later dates.

I = simple interest
$\mathrm{P}=$ principal
$r=$ rate
$\mathrm{t}=$ time (in years)

Total Value of Account

1. Simple interest: Total Value $=$ Principal + Interest $=P+$ Prt $=P(1+r t)$
2. Compound interest:

$$
F V=P V\left(1+\frac{\mathrm{r}}{n}\right)^{(n t)}
$$

Interest at any time t for Compound Interest $=F V($ at $t)-P V$

Antonio invests \$9,000 at 3\% simple interest for 24 years. Round your answers to the nearest cent.

How much interest is earned over the 24 year period?

How much is in the account at the end of the 24 year period?

Simple Interest

Javier wants to invest $\$ 8000$ in a savings account that pays 7% simple interest. How long will it take for this investment to double in value? Round your answer to the nearest tenth.

Compound Interest

$$
F V=P V\left(1+\frac{\mathrm{r}}{n}\right)^{(n t)} \quad \text { Exponent }
$$

Compound interest is interest paid on both the original principal and on all interest that has been added to the original principal.
FV = accumulated balance after t years (Future Value)
PV = starting principal (Present Value)
$r=$ annual percentage rate (as a decimal)
$t=$ number of years
$\mathrm{n}=$ number of compounding periods (e.g. annually, semi-annually, quarterly, monthly, daily)

If $\$ 24,000$ is invested in an account for 10 years. Find the value of the investment at the end of 10 years if the interest is:
(a) 6% simple interest: $\$ \square$
(b) 6% compounded annually: $\$ \square$

$$
F V=P V\left(1+\frac{\mathrm{r}}{n}\right)^{(n t)}
$$

Round your answers to the nearest cent.

You deposit $\$ 2000$ in an account earning 8% interest compounded monthly. How much will you have in the account in 5 years?

Round to the nearest cent.

$$
F V=P V\left(1+\frac{\mathrm{r}}{n}\right)^{(n t)}
$$

If $\$ 10,000$ is invested in an account for 25 years. Calculate the total interest earned at the end of 25 years if the interest is:

6% compounded monthly: $\$ \square$

$$
F V=P V\left(1+\frac{\mathrm{r}}{n}\right)^{(n t)}
$$

Round your answers to the nearest cent.

How Much You Need Now to Deposit to Have Future Value

FV = accumulated balance after t years (Future Value)
$\mathrm{PV}=$ starting principal (Present Value)

$$
P V=F V\left(1+\frac{\mathrm{r}}{n}\right)^{(-n t)}
$$

$r=$ annual percentage rate (as a decimal)
$t=$ number of years
$\mathrm{n}=$ number of compounding periods (e.g. annually, semi-annually, quarterly, monthly, daily)

How much would you need to deposit in an account now in order to have $\$ 4000$ in the account in 10 years? Assume the account earns 8\% interest compounded monthly. Round to the nearest cent.

$$
P V=F V\left(1+\frac{\mathrm{r}}{n}\right)^{(-n t)}
$$

Finding Payment Amounts

To find the payment amount, we can use the following formula:

PV = Initial Amount
$r=$ annual interest rate
$t=$ time in years
$\mathrm{n}=$ payment frequency
PMT = payment

$$
P M T=\frac{P V *\left(\frac{r}{n}\right)}{1-\left(1+\frac{\mathrm{r}}{n}\right)^{(-n t)}}
$$

You want to buy a $\$ 225,000$ home. You plan to pay 10% as a down payment, and take out a 30 year loan for the rest.
a) How much is the loan amount going to be?

b) What will your monthly payments be if the interest rate is 5% ?

$$
P M T=\frac{P V *\left(\frac{r}{n}\right)}{1-\left(1+\frac{r}{n}\right)^{(-n)}}
$$

\square
c) What are your total payments over the 30 year period? \qquad
d) How much interest did you pay to the bank? \qquad

